

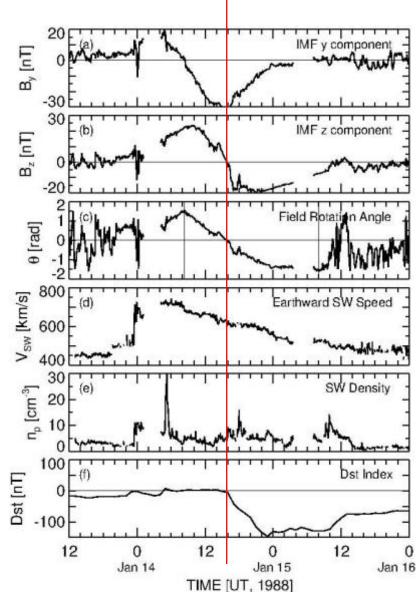
A Minimum and Sufficient L5-L1 Platform for Forecasting CME-Driven Geomagnetic Storms

James Chen

Plasma Physics Division, Naval Research Laboratory

L5 in Tandem with L1: Future Space-Weather Missions Workshop 6–9 March 2017, London, UK Supported by NRL Base Research Program

- What new *information from L5* data to predict what?
 - Near-Sun CME trajectory data (Z_{data}) to predict **B**_{CME}(1 AU) faster than real time
 - Unique advantage of L5 observation
- Where is B field information contained in CME data?
 → In the CME dynamics Z_{data}(t)
- Focus: accurate and timely forecasting of major (CME-driven) geomagnetic storms
- Objective: use the predicted B_{CME}(1 AU) to calculate global ionospheric dynamics in 3-D (without using indices)


MAJOR GEOMAGNETIC STORMS: CAUSAL PROCESS

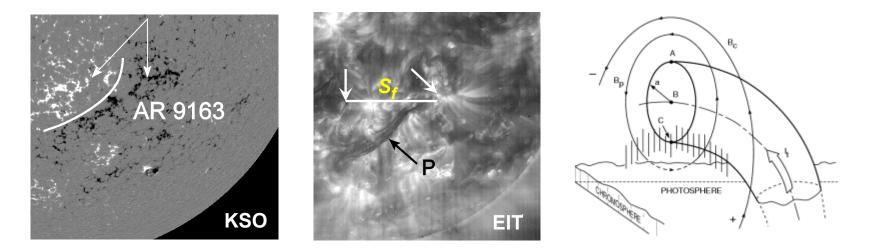
Major geomagnetic storms

- Caused by long durations of strong southward IMF on Earth [*Rostoker and Falthammar* 1967; *Hirshberg and Colburn* 1969; *Russell et al.* 1974]
- Driven by CME ejecta magnetic field B_{CME}
 after discovery of CMEs
- *v*. Recurrent storms—sector boundary crossings [*Neupert and Pizzo* 1974]

Forecasting major storms

- Accurately forecast B_{CME}(1 AU) in a timely manner (24—48 hrs) (severity and duration)
- But, no B_{CME} data until it reaches 1 AU

Modeling magnetic field of evolved CME ejecta


- Most common approach: use *apparent* photosperic magnetic "field" (i.e., uncancelled flux per pixel) to drive numerical models; study CME initiation mechanisms
 - Apparent "fields" and "flows" = sum of all sources; relation to the eruptive structure is ambiguous for forecasting individual events
 - Need an *understanding* of the specific relationship to eruption

INFORMATION CONTENT OF DATA

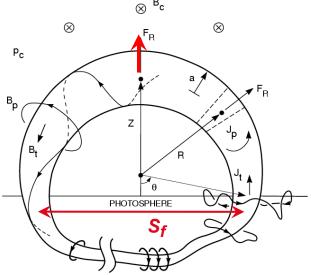
L5+L1 Solar data to predict CME dynamics to 1 AU

- L5: CME trajectory $Z_{data}(t_i)$ near the Sun
 - L1: Magnetograms of source region \longrightarrow polarity of flux-rope **B**; $\Delta \mathbf{B}_{photo}(t)$
 - EUV images to determine source location and direction of eruption; estimate S_f

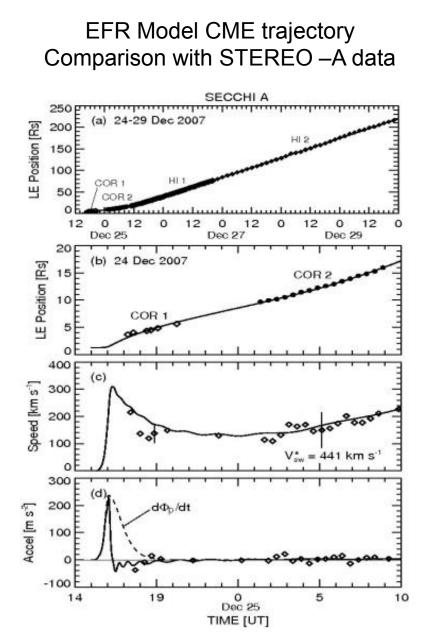
"Minimum and Sufficient"

Why can one extract B_{CME}(1AU) from near-Sun CME trajectory?

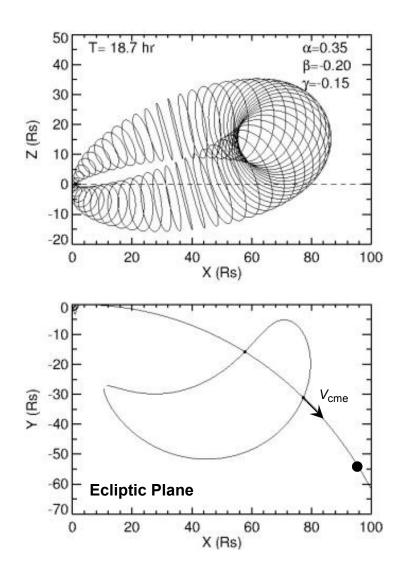
- Observed $Z_{data}(t)$ is determined by: $\mathbf{J} \times \mathbf{B} = (\nabla \times \mathbf{B}) \times \mathbf{B}$
- Dynamics contains the information

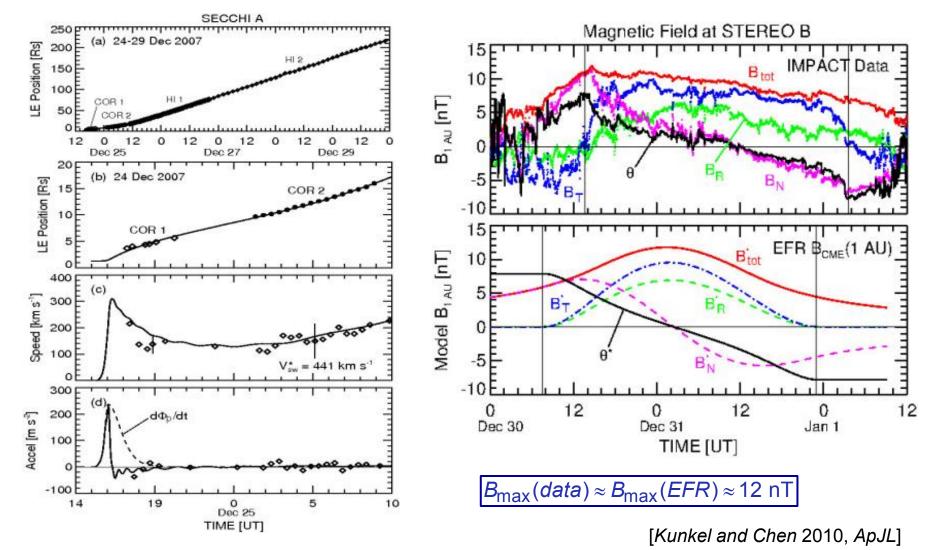

- The EFR equations of motion for a flux rope
- The major (*R*) and minor (*a*) radial equations (coupled for 3-D expansion)

$$M\frac{d^{2}Z}{dt^{2}} = \frac{I_{t}^{2}(t)}{c^{2}R} \left[\ln\left(\frac{8R}{a}\right) + \frac{1}{2}\beta_{p} - \frac{1}{2}\frac{B_{t}^{2}}{B_{p}^{2}} - 2\left(\frac{R}{a}\right)\frac{B_{c}}{B_{p}} - 1 + \frac{\xi_{i}}{2}\right] + F_{g} + F_{d}$$
$$M\frac{d^{2}a}{dt^{2}} = \frac{I_{t}^{2}}{c^{2}a} \left(\frac{B_{t}^{2}}{B_{p}^{2}} - 1 + \frac{\overline{p} - p_{a}}{B_{p}^{2} / 8\pi}\right) \otimes \mathbb{B}_{c}$$


• Major radial equation of motion:

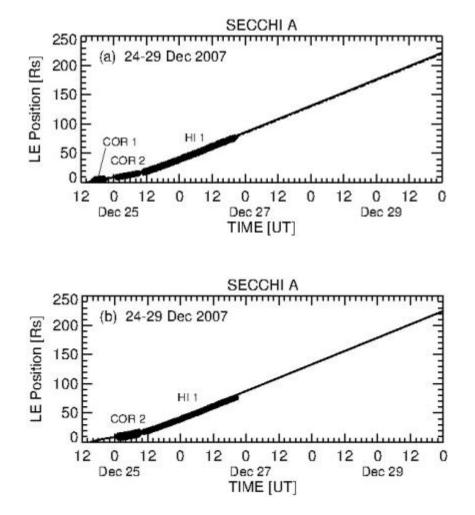
$$\frac{d^2 Z}{dt^2} = A \left(\nabla \times \mathbf{B} \times \mathbf{B}, \ S_f, \ldots \right)$$


$$\mathbf{B}_{pred} = \mathbf{F}\left[\left(\frac{d^2 Z}{dt^2}\right)_{data}\right]$$


ERUPTING FLUX ROPE (EFR) MODEL OF CMEs

3-D EFR Flux Rope: Magnetic Surfaces

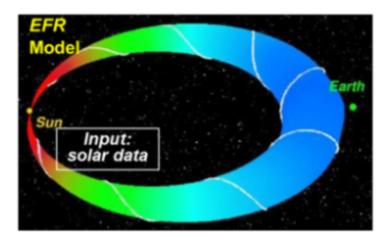
COMPARISON WITH STEREO-B DATA

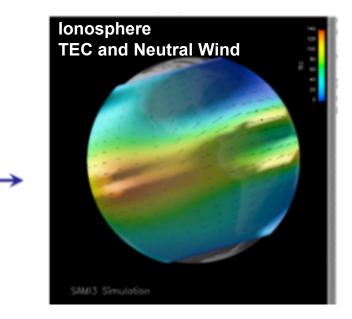


• Solution is within <1% of the height data.

Calculated B field and plasma data are consistent with STEREO-B data at 1 AU

MINIMUM AND SUFFICIENT INFORMATION


- Artificially removed HI2 data and obtained the EFR solution
 - Virtually unchanged, $\mathcal{D} = 1.23\%$
 - Magnetic field is unchanged, in good agreement
- Further removed COR1 data and constrained the solution with *only* COR2 and HI1data
 - Again virtually unchanged, $\mathcal{D} = 0.55\%$
 - Magnetic field is virtually unchanged



For this event, the warning time is >72 hrs

FORCASTING CME-DRIVEN GEOMAGNETIC STORMS

Sun-Earth System

Physical processes to model faster than real time

CME dynamics to 1 AU (Earth) after eruption ----> EFR

 $\mathbf{B}_{CME}(t) - \mathbf{V}_{CME}$, dimension, and 3-D geometry of ejecta (arrival time and duration) Polarity and strength of \mathbf{B}_{CME} (1AU)

• Ionospheric dynamics $TEC(\mathbf{x},t)$ in 3-D driven by $\mathbf{B}_{CME}(t) \longrightarrow SAMI3$ [Huba]

SUMMARY

Minimum and sufficient data

- CME dynamics and $\mathbf{B}_{CME}(t)$: $\mathbf{B}_{CME}(1AU)$ can be extracted from $Z_{data}(t)$ data alone
 - Promise of a true forecasting capability with 24—48 hrs of advance warning time
- Small system for accurately predicting CME-driven geomagnetic storms
 - L5: Coronagraphs to observe CMEs out to 1/3 to 1/2 AU
 - L1: EUV imager to determine the source location
 - L1 enhancements: $\Delta \mathbf{B}_{photo}(t)$, halo CME, $I_{SXR}(t)$, $I_{EUV}(t)$ —actionable input information in the event of L5 data outages
 - SAMI3+GCM: combined with SAMI3/RCM, prediction of ionospheric dynamics in 3-D
- L1 IMF data (e.g., ACE/DSCOVR) can yield closely validation with a warning time of several hours (< 10 – 15 hrs) [*Chen et al.* 1997; Arge et al. 2002; *Chen et al.* 2012]
- Future refinements: (1) self-consistent 3-D expansion (*Kunkel*, PhD, 2012); (2) further test and refine EFR and SAMI3/RCM