Global Solar Magnetic Maps

L5 in Tandem with L1 Workshop
07 Mar 2017

Carl J. Henney¹, Nick Arge², and Kathleen Shurkin³

1. AFRL/Space Vehicles Directorate, Kirtland AFB, NM
2. NASA Goddard Space Flight Center, Greenbelt, MD
3. ISR, Boston College, Chestnut Hill, MA
Global solar magnetic maps are utilized to drive:

- **coronal & solar wind models** used to forecast the solar wind and Coronal Mass Ejection (CME) arrival times
- **indices & irradiance models** to forecast $F_{10.7}$, Mg II, and bands of EUV/FUV irradiance 1 - 7 days in advance for thermospheric modeling
Global Solar Magnetic Maps:
ADAPT* Modeling Framework

- L1 observation in “sky frame” at obs_time
- Magnetogram data & uncertainty remapped into heliographic coordinates: longitude vs. latitude (180 x 180 deg).
- ADAPT pre-processing aligns all B_r input data (far & near) within model frame (i.e., 360x180; Carrington)

Model ensemble provided by each Observatory (SDO/HMI, NSO GONG & VSM)

Model ensemble from previous time step

Forward Modeling
Differential Rotation
Meridional Circulation
Supergranulation

Data Assimilation using EnLS Method

Model ensemble at obs_time

30 June 2010
NSO SOLIS/VSM

* ADAPT - Air Force Data Assimilative Flux Transport
(Arge et al. 2013, Henney et al. 2015, Hickmann et al. 2015)
Global Solar Magnetic Maps:
L5 Magnetograph Specification

- **L5 magnetograph specification**\(^1\) (*based on ADAPT WSA-Enlil and F10.7 & EUV irradiance modeling experience*):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Area</td>
<td>Active Regions(^2)</td>
<td>Full-disk</td>
</tr>
<tr>
<td>Spatial Scale</td>
<td>2”/pixel</td>
<td>1”/pixel</td>
</tr>
<tr>
<td>Polarimetry</td>
<td>LOS(^3) (I, V)</td>
<td>I, Q, U, V</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>+/- 2500 G</td>
<td>+/- 3500 G</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>< 1 G/pixel</td>
<td>< 1 G/pixel</td>
</tr>
<tr>
<td>Zero-point error(^4)</td>
<td>< 0.1 G</td>
<td>< 0.05 G</td>
</tr>
<tr>
<td>Cadence</td>
<td>2 hours</td>
<td>15 minutes</td>
</tr>
</tbody>
</table>

Notes
1. Assuming L1 magnetograph (or ground based network) support with mostly optimal specifications.
2. Also need daily scan of polar regions
3. Assuming ARs remapped to Br with, e.g., potential-field reconstruction (ops version needs to be developed; see Leka, Barnes, Wagner 2017).

- **Coordinate Information Requirement:** need the L5 image central meridian offset from \(L_o\) viewed from L1. It is key to remap both L1 & L5 magnetograms into a fixed frame, e.g., Carrington (i.e., not centered on individual CM), to avoid unnecessary and diffusive interpolation.
Global Solar Magnetic Maps:
Future Model Development

Improvements with L5 Magnetograph

<table>
<thead>
<tr>
<th>Coronal & Solar Wind Models</th>
<th>EUV Irradiance Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-Disk obs at:</td>
<td></td>
</tr>
<tr>
<td>Polar Observation Gap</td>
<td>East Limb AR Polarity Split</td>
</tr>
<tr>
<td>L1</td>
<td>~6 months</td>
</tr>
<tr>
<td>L1 & L5 (and with L4 -> 2months)</td>
<td>~4 months</td>
</tr>
</tbody>
</table>

Future Model Development Areas:

- **Active region emergence & evolution modeling:**
 - estimate AR evolution during the ~10 days (~130°) on the farside [key for: C&SW]
 - near-side emergence growth & peak size from helioseismic subsurface flows? [EUV]
 - coupling far-side with L5 & L1 AR observations to generate 4D-Var type maps [C&SW]

- **Ensemble modeling:**
 - capture uncertainty for unobserved regions (polar/farside) [C&SW & EUV]
 - include forward modeled AR evolution & uncertainty for future maps [EUV]
 - validation/metrics feedback (e.g., CH boundaries) to “prune” ensemble [C&SW]
Summary

• Full-disk imaging from L5 will provide ~4 days of warning with regards to farside AR emergence.
• Space Weather modeling is dependent on how well we know the solar global magnetic field distribution. An L5 magnetograph will greatly improve global magnetic maps (i.e., longitude coverage ~210 degrees), improving solar wind, EUV irradiance, and CME arrival time predictions.
• From STEREO, improved CME speeds & size estimates are expected with a L5 coronagraph.
• In addition, a solar soft X-ray instrument at L5 would enhance particle/SEP event predictions. And, helioseismic capability from L5 & L1 would enhance detection of farside AR emergence/evolution.

Recent ADAPT Related References:

• Forecasting Solar Extreme and Far Ultraviolet Irradiance, Henney, Hock, Schooley, Toussaint, White, Arge 2015, Space Weather, 13, 141
• Data Assimilation in the ADAPT Photospheric Flux Transport Model, Hickmann, Godinez, Henney, Arge 2015, Solar Physics, 209, 1105

• Near real-time ADAPT maps, and $F_{10.7}$ & Mg II forecasts (1, 3, 7 day), are public via the National Solar Observatory (NSO) at: ftp://gong2.nso.edu/adapt

Acknowledgements
ADAPT is supported by the AFRL & NASA, and this work utilizes data produced collaboratively between AFRL/ADAPT and NSO/NISP.