
Mapping low corona flow trends
via time dependent AIA image processing

Gabriel Muro & Huw Morgan

ABSTRACT
Applying the Time-Normalized-Optical-Flow (TNOF) image
processing technique to AIA extreme ultraviolet (177-305 nm)
data reveals fine-scale and faint plasma motion that are tracked
through optical flow methods, giving 2-D flow maps. The flows
detected thus far appears to be oriented in the low corona [1,2],
but the Lucas-Kanade (LK) method has known weaknesses near
the solar limb, due to small separation in observational position,
and varies in quality across AIA cameras. To reliably refine the
method, synthetic image data is developed with a well defined
velocity field and will serve as the testing platform to separate
systematic biases from true flows. Once fully vetted, the strength
of the project lies in understanding the faint moving disturbances
that propagate and persist during the “quiet sun” period that is
the standard solar condition. The method may be adapted to
include elevation flow trends in/out of the low corona should
tandem spacecraft be flown at L1 & L5, allowing 3-D maps of
flows.

REFERENCES
[1] Morgan, H., Druckmüller, M. 2014, Solar Physics, Vol. 289.
[2] Morgan, H., Hutton, J. 2018, Astrophysical Journal, Vol. 853.
[3] Lucas, B., Kanade, T. 1981. Proc. of Image Understanding Workshop.
[4] Cabral, B., Leedom, L. 1993. Proc. of 20th Conf. on Comp. Graphics.

TIME NORMALIZED OPTICAL FLOW
Continuous AIA data is well suited for dynamics by normalizing a
sliding time window on consecutive observations [2]:

OPTICAL FLOW TRACKING
The LK method for optical flow analyses successive images of the
same scene and draws an estimated path that features move
along [3]. It does so by identifying changes in a pixel’s intensity
and comparing it against the known intensity gradients in the
region of the pixel:

Presently, optical velocity paths drawn via this method have
aligned well with visible structures in MGN contrast enhanced
images, there remains many paths with no clear contextual
alignment across the “Quiet Sun”.

𝑇𝑁𝑂𝐹 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 =
𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

∆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

∆𝑥
𝑣𝑥 +

∆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

∆𝑦
𝑣𝑦 = −

∆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

∆𝑡𝑖𝑚𝑒

Figure 2: Crosses are 15-min time series of
pixel in Fig 1. Black line is time-smoothed
signal. Solid red line is the slow variation in
the signal (user selected). Dotted red line is
±1 standard deviation from the mean.

Figure 4: The TNOF processed signal, after
applying the equation to ~75 images.

Figure 1: Example image from AIA’s 193 Å
channel. Processed via multiscale Gaussian
normalization (MGN) to enhance faint
structures. The red cross pixel position is used
as an example of the method.

Figure 3: Example still image of Fig 1 after
TNOF normalization to enhance faint
structures. The red cross pixel position is used
as an example of the method.

While time normalization limits still image structural context, it is
crucial to reveal temporal faint motions across the solar disk that
are usually dominated by spatial variations in intensity. In prior
studies, application of TNOF has been most effective for AIA
171/193 images, with less coherent detail in other channels.

SYNTHETIC DATA
Success with TNOF and LK methodology appears promising and
has discovered ubiquitous and continuous propagating
disturbances across the solar disk [2]. And yet, discrepancies in
optical velocities among different AIA channels may be due to
systemic scaling biases attributed to user-adjusted spatial and
time-smoothing parameters. Without independent verification,
synthetic data provides the best alternative for a controlled test
environment.

Figure 5: (Left) MGN processed image from the AIA 193 channel. (Right) Optical velocity paths
plotted onto an MGN image from analysis of 300 images, apparent motion starts at the violet
and ends red portions of each line.

S(x1,y1) S(x2,y1)

S(x1,y2) S(x2,y2)

S(x1,y1) S(x2,y1) S(x3,y1)

S(x1,y2) S(x2,y2) S(x3,y2)

S(x1,y3) S(x2,y3) S(x3,y3)

N = 2 N = 3 N = 3 N = 10

Figure 7: Examples of the effect of order, N, on the sinusoidal basis function. (N=2 red) Displays the
four functions compiled within a single grid point, and (N=3 red) the increased complexity of nine
functions compiled within the same point. (N=3 graph) Minor peak & trough sinusoidal complexity
graphed across the x-axis, and (N=10 graph) is the complexity of the following velocity field.

Scan the QR code below to see a
one minute video of Figures 1, 3, 5, 10

Or enter the URL:
http://users.aber.ac.uk/gam27/RAS2019animation.mp4

The complexity across a single axis of the velocity field is defined
by the number of ordered pairs, N, summed within a grid point:

The resulting 2-D velocity field is created and may be
manipulated globally or with discrete discrepancies. For display
purposes, the N=10 field is unadjusted:

Figure 8: Velocity field generated in 360 x 181 grid points. Blue regions are local troughs where
flow will migrate towards. Red regions are local peaks upon which flow will migrate away.

Figure 9: Example LIC of flow magnitude within the Fig 8 velocity field. Spatial resolution is set to
100 parts per grid point. Streamlines within blue regions indicate flow speed is fast and within red
regions indicates flow speed is slow.

FUTURE WORK
The testing platform will evolve further to:
• Add solar-like features & resolution similar to AIA
• Implement & refine LK method on all channels
• Compare LK/LIC quality against other techniques
• Optimize efficiency well enough to map small-scale, faint

motion across the entire AIA dataset.

Flow within this field is mapped in two distinct methods, the first
is via line-integral convolution (LIC) [4]. Linear and curvilinear
filtering is performed locally along streamlines defined by the
vector field to approximate flow speed magnitude. The algorithm
is computationally expensive & reversible, but yields precise
results for any particle motion within the field:

The second method is via direct interpolation of the vector field.
This yields reversible time-series positions for an arbitrary
number of particles. Each particle is set to a high intensity
brightness and diffuses as it moves, complicating the original field
in a verifiable manner:

Figure 10: (Orange movie) Animation of direct interpolation of Fig 8 velocity field. 500 particles are
tracked over 200 sequenced images. All particles have an arbitrary initial intensity set to 250 and
the background initially is 0. Particles migrate towards local troughs and diffusion saturates the
region. (Grayscale movie) Animation of TNOF method applied to the preceding set of images. Time
normalization set to 20 images, which crops 10 frames from the start & end. Static particles are
removed and only active motion is recorded

As shown in Fig 10, TNOF is a powerful tool for isolating faint,
small-scale moving disturbances across the time series of 2-D
images.

See inserts on next page



Insert #1

Figure 6 & 7: Lift this flap to see a detailed description of values within the function.

Synthetic data is created by applying a sinusoidal basis function
that randomly determines the underlying 2-D velocity field [2]:

Insert #2

S(x1,y1) S(x2,y1)

S(x1,y2) S(x2,y2)

S(x1,y1) S(x2,y1) S(x3,y1)

S(x1,y2) S(x2,y2) S(x3,y2)

S(x1,y3) S(x2,y3) S(x3,y3)

N = 2 N = 3 N = 3 N = 10

Figure 7: Examples of the effect of order, N, on the sinusoidal basis function. (N=2 red) Displays the
four functions compiled within a single grid point, and (N=3 red) the increased complexity of nine
functions compiled within the same point. (N=3 graph) Minor peak & trough sinusoidal complexity
graphed across the x-axis, and (N=10 graph) is the complexity of the following velocity field.

The complexity across a single axis of the velocity field is defined
by the number of ordered pairs, N, summed within a grid point:

𝑆𝑘𝑥 = sin 𝑘𝑥𝑥
′

𝑆𝑘𝑦 = sin 𝑘𝑦𝑦
′

𝐶𝑘𝑦 = cos 𝑘𝑦𝑦
′

𝐶𝑘𝑥 = cos 𝑘𝑥𝑥
′

𝑥′ =
𝜋𝑖

𝑛𝑥 − 1
, 𝑖 = 0, 1, 2…𝑛𝑥 − 1

𝑦′ =
𝜋𝑗

𝑛𝑦 − 1
, 𝑗 = 0, 1, 2…𝑛𝑦 − 1

𝐶 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑐𝑘𝑥,𝑘𝑦0…3 𝑎𝑟𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑐𝑎𝑙𝑒𝑟𝑠 [−1,1]

𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑘𝑥 𝑎𝑛𝑑 𝑘𝑦 𝑠𝑝𝑒𝑐𝑖𝑓𝑦 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 𝑎𝑠 𝑎𝑛 𝑁 𝑠𝑖𝑧𝑒 𝑏𝑜𝑥

Figure 6: Description of values within the sinusoidal basis function S(x,y)

Insert #3


