Introduction to Scintillations

Mark Walker (Manly Astrophysics)

Overview

- Basic physics of scintillation
- Context: Ionosphere vs. Solar Wind vs. Interstellar
- Current trends in interstellar scintillation

Waves in vacuum: Spherical wavefronts, no scintillation.

Waves in a medium:

10X

LOAL

hone

Inhomogeneities introduce phase structure. Amplitude structure develops gradually as a result of phase structure.

"Thin screen" approximation: phase changes introduced in a single plane.

"Frozen screen" approximation: no change in screen structure during obs.

Phase structure imposed on wavefront due to passage through a medium:

$$\phi(x, y) = \frac{2\pi}{\lambda} \int \left\{ n(x, y, z) - 1 \right\} dz$$

In the radio, the dominant refractive index, n, is usually due to ionised gas, so

$$\phi(x, y) \to -N_e(x, y) \lambda r_e$$

Classical radius of electron

Calculations of Scintillations

Electric field, u, is calculated via the Fresnel-Kirchoff integral:

$$u = \frac{1}{2\pi i r_F^2} \int dx \, dy \, \exp\left(i\phi + i\frac{(x^2 + y^2)}{2r_F^2}\right)$$

Fresnel scale:
$$r_F = \sqrt{\frac{D}{2\pi}}$$

Plays a key role when

 $\phi \ll 1$

Calculations of Scintillations

The electric field, u, is given by the Fresnel-Kirchoff integral:

$$u = \frac{1}{2\pi i r_F^2} \int dx \, dy \, \exp\left(i\phi + i\frac{(x^2 + y^2)}{2r_F^2}\right)$$

Total Phase

"Weak Scattering"

Calculations of Scintillations

The electric field, u, is given by the Fresnel-Kirchoff integral:

$$u = \frac{1}{2\pi i r_F^2} \int dx \, dy \, \exp\left(i\phi + i\frac{(x^2 + y^2)}{2r_F^2}\right)$$

"Strong Scattering"

Stationary Phase Points

Real and imaginary parts of the integrand oscillate rapidly. Except near points of stationary phase. Those points dominate the total electric field.

"Strong Scattering"

Stationary Phase Points

Real and imaginary parts of the integrand oscillate rapidly. Except near points of stationary phase. Those points dominate the total electric field.

"Weak Scattering"

Position on sky vs. delay, Doppler

 θ_x

 $\tau_g \propto \theta_x^2 + \theta_y^2$ $\omega \propto \theta_x$

1/1X

 au_g

 $\boldsymbol{\omega}$

Manly Astrophysics

 $heta_{
m v}$

Position on sky vs. delay, Doppler

1

Radio frequency: Fourier conjugate to <u>total</u> delay

θ

V

Manly Astrophysics

Time:
→ Fourier conjugate to Doppler-shift

 (\mathcal{D})

T₈

2 stationary phase points, 1 interference fringe

5 stationary phase points, 10 interference fringes

10 stationary phase points, 45 interference fringes

20 stationary phase points, 190 interference fringes

 $8x10^3$ stationary phase points, $3x10^7$ interference fringes

Strong scattering: separation of scales

"Diffractive Scintillation"

Wave interference yields intensity variations on small spatial (temporal) and frequency scales.

 $s_0 =$ Field coherence scale = Diffractive scale

Strong scattering: separation of scales

"Diffractive Scintillation"

Wave interference yields intensity variations on small spatial (temporal) and frequency scales.

"Refractive Scintillation"

(De)Focusing yields intensity variations on large spatial (temporal) and frequency scales.

Refractive and Diffractive Scintillations

Steep vs. shallow density fluctuation spectra

 $\beta > 4$

Steep spectrum.

 $|\tilde{n}_e(q)|^2 \propto q^{-\beta}$

 $\beta < 4$

 $\beta = 4$

Shallow spectrum

 $\log q$

 $\log |\tilde{n}_e(q)|^2$

Steep vs. shallow fluctuation spectra

Goodman & Narayan

Steep vs. shallow fluctuation spectra

Influence of source size: Smoothing of small-scale structure

ContextScreen Distance:Log10D(m)0369121518212427

Extragalactic

Fresnel scales @ 1 GHz $\theta_F \sim 4$ nano-arcsec $t_F \sim 1$ month

Sources: ?? Fast Radio Bursts ?? (Terra Incognita)

Context Screen Distance: Log₁₀ D(m) 0 3 6 9 12 15 18 21 24 27

Interstellar

Extragalactic

Fresnel scales @ 1 GHz $\theta_F \sim 80 \ \mu \, {\rm arcsec}$ $t_F \sim 2 \ {\rm hours}$

Sources: quasars and pulsars

Context Screen Distance: Log₁₀ D(m) 9 12 15 18 21 27 3 6 24Interstellar Ionospheric Interplanetary Extragalactic S₄ @ 1.575 GHz Fresnel scales @ 1 GHz $\theta_F \sim 1$ arcmin $t_F \sim 50$ msec COM Educati Sources: quasars and satellites

Manly Astrophysics

COM - BOdeo

- "Reference model": distributed Kolmogorov turbulence But ...
- Several phenomena that don't fit: "Extreme Scattering" Situation might actually be more like this:

"Extreme" scattering

- "Reference model": distributed Kolmogorov turbulence But ...
- Several phenomena that don't fit: "Extreme Scattering" Situation might actually be more like this:

"Normal" scattering

- "Reference model": distributed Kolmogorov turbulence But ...
- Several phenomena that don't fit: "Extreme Scattering" Situation might actually be more like this:

Super-strong scattering screens Size of order 10^{12.5} m? Highly Anisotropic Pressure >> Ambient ?

Extreme screens are far more numerous than stars.

What are these extreme screens??

- Modern backends have high information capture rate
 - Great for pulsar spectroscopy
- Detailed analyses of pulsar data
 - Secondary Spectrum" analysis
 - Holographic approaches
 - Cyclic spectroscopy
- Kinematics and distribution of local screens
 - IntraHour Variable quasars (annual cycles)
- New GHz radio telescopes with high survey speed
 - MEERKAT, APERTIF (Westerbork), ASKAP
 - Expect many new IntraHour Variables