New insights in astrophysics and space weather with widefield interplanetary scintillation

Rajan Chhetri (ICRAR – Curtin)

John Morgan (ICRAR – Curtin) Ron Ekers (CASS) J-P Macquart (ICRAR – Curtin) Elaine Sadler (CASS)

Scintillating Science Hermanus, South Africa 16 July 2019

I. Why?

II. How?

III. What?

IV. Where?

I. Why use IPS for extragalactic studies?

II. How do we measure IPS with the MWA?

- **III. What** interesting results have we found so far?
- IV. Where to from here?

- I. Why use IPS for extragalactic studies?
- **II. How** do we measure IPS with the MWA?
- III. What results did we get?
- IV. Where to from here?

Background – Extragalactic Radio Sources

Cygnus A (5 GHz)

Credit: R. Perley, NRAO

Background – Extragalactic Radio Sources

Cygnus A (5 GHz)

Credit: R. Perley, NRAO

Background – Extragalactic Radio Sources

Cygnus A (5 GHz)

Credit: R. Perley, NRAO

The High Frequency (Extragalactic) Radio Sky

8

Credit: Chhetri+2013

Credit: Verschuur & Kellermann 1988, Chhetri+2013

Credit: Verschuur & Kellermann 1988, Chhetri+2013

Credit: Franzen+2018

Large Area Radio Surveys and their Angular Resolutions

Example: The GLEAM Survey

> 300 000 sources in the field~ 50 mJy flux density limit

The instrument

The **Murchison Widefield Array** (MWA) in Western Australia 128 tiles with 2 x 16 dipoles each Operating frequencies: 80 – 300 MHz Bandwidth: 30.72 MHz

Angular resolution (3-km array) at 150 MHz > 2 arcmin!

Credit: N. Hurley-Walker

The instrument

The Murchison Widefield Array (MWA) in Western Australia 128 tiles with 2 x 16 dipoles each Operating frequencies: 80 – 300 MHz Bandwidth: 30.72 MHz

Angular resolution (3-km array) at 150 MHz > 2 arcmin!

Credit: N. Hurley-Walker

Very Long Baseline Interferometry (VLBI)

2 Networks and telescopes used for IYA2009 24hr e-VLBI. Image by Paul Boven <boven@jive.nl>. Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visibleearth.nasa.gov).

Very Long Baseline Interferometry (VLBI)

Time/source x Very large number of sources = Challenging

Networks and telescopes used for IYA2009 24hr e-VLBI. Image by Paul Boven

boven@jive.nl>. Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visibleearth.nasa.gov).

Interplanetary Scintillation (IPS)

Compact radio sources (< 1 arcsec) + Turbulence in interplanetary plasma

=

Scintillation effects (random fluctuations in flux density)

The instrument

The Murchison Widefield Array (Western Australia) Operating frequencies: 80 – 300 MHz Bandwidth: 30.72 MHz Angular resolution (3-km array) at 150 MHz > 2 arcmin!

Credit: N. Hurley-Walker

The instrument

The Murchison Widefield Array (Western Australia) Operating frequencies: 80 – 300 MHz Bandwidth: 30.72 MHz

Angular resolution (3-km array) at 150 MHz > 2 arcmin!

Credit: N. Hurley-Walker

Interplanetary Scintillation (IPS)

Compact radio sources (< 1 arcsec) + Turbulence in interplanetary plasma

Scintillation effects (random fluctuations in flux density)

Time/source x Very large number of sources = Challenging

The instrument

The Murchison Widefield Array (Western Australia) Operating frequencies: 80 – 300 MHz Bandwidth: 30.72 MHz

Angular resolution (3-km array) at 150 MHz > 2 arcmin!

Field of View: 15 – 50 degrees (200 – 2500 sq degrees) Temporal resolution: 0.5 sec *Excellent instantaneous UV coverage*

Credit: N. Hurley-Walker

The Opportunity

15 – 50 degrees (200 – 2500 sq degrees) Field of View + Interplanetary scintillation

=

Widefield IPS

History of IPS with the MWA

Kaplan et al. 2015 detected a night time IPS.

Pilot study on wide-field IPS by J. Morgan, Curtin University

Regular daytime observations (late December 2015 – July 2016)

Observations at two bands 80 MHz & 162 MHz

Over 4000 observations made of different parts of sky

I. Why use IPS for extragalactic studies?

II. How do we measure IPS with the MWA?

- III. What results did we get?
- IV. Where to from here?

Important Properties of the MWA

Large field-of-view (~900 sq. deg at 162 MHz)

27

Important Properties of the MWA

Excellent instantaneous UV coverage

Credit: J. Morgan

IPS with the MWA

- ~5 minutes of observations with 0.5 second integration time
 - 80 and 162 MHz
- Make a continuum image from the total observation.
- Make separate images at 0.5 second intervals.
 - Measure intensity fluctuation at each pixel of the images along time axis

Time series

GLEAM J002430-292847 O Sama Time (seconds) GLEAM J011651-205202 Time (seconds)

IPS with the MWA

- ~5 minutes of observations with 0.5 second integration time
 - 80 and 162 MHz
- Make a continuum image from the total observation.
- Make separate images at 0.5 second intervals.
 - Measure intensity fluctuation at each pixel of the images along time axis
 - Calculate standard deviation of each pixel using all (~600) time steps.
 - Produce a variability image.

A Typical MWA field

Continuum image 23 x 8 sq deg

.1 0.18 0.25 0.33 0.4 0.48 0.56 0.63 0.71 0.78

A Typical MWA field

Variability image 23 x 8 sq deg

IPS with the MWA

- ~5 minutes of observations with 0.5 second integration time
 - 80 and 162 MHz
- Make a continuum image from the total observation.
- Make separate images at 0.5 second intervals.
 - Measure intensity fluctuation at each pixel of the images along time axis
 - Calculate standard deviation of each pixel using all (~600) time steps.
 - Produce a *variability image*.
- Calculate scintillation index using values in variability image & continuum image for each source.

Detect scintillation on 302 out of 2550 objects (12%)

Detect scintillation on 302 out of 2550 objects (12%)

Detect scintillation on 302 out of 2550 objects (12%)

- **I.** Why use IPS for extragalactic studies?
- **II. How** do we measure IPS with the MWA?
- III. What results did we get?
- IV. Where to from here?

Detection Statistics

High S/N: 414 objects

- Strong Scintillators (NSI ≥ 0.9)
 9%
 - Moderate Scintillators (0.4 ≤ NSI < 0.9)
 23%
 - Weak/non Scintillators (NSI < 0.4) 54%
 - Unrestrictive NSI limits All have NSI < 0.6 14%

High S/N: 414 objects

- Strong Scintillators (NSI ≥ 0.9)
 9%
 - Moderate Scintillators (0.4 ≤ NSI < 0.9) 23%
 - Weak/non Scintillators (NSI < 0.4) 54%
 - Unrestrictive NSI limits All have NSI < 0.6 14%

Weak Scintillators

Weak Scintillators

SEDs: Joe Callingham

Strong Scintillators

Result - population

Strong Scintillators

Result – high redshift candidates

Strong Scintillators

Result – pulsars

PSR J0034-0721

Detected with S/N of 4.6 in I image 5.6 in variability image

Normalised scintillation index 1.92+/-0.49 (Highest in the field)

Result – pulsar candidates

PSR J0034-0721

Detected with S/N of 4.6 in I image 5.6 in variability image

Normalised scintillation index 1.92+/-0.49 (Highest in the field)

Using IPS (NSI>0.9) = candidate pulsars ~ 9%

+ spectra (< -0.7) = Reduction in contamination by AGNs ~ 45 x

Result – source counts

Space weather

Unprecedented number of pierce points in FoV

Space weather

J. Morgan

Space weather Scintillation index ratio

- Choose observations which we believe are likely to contain a CME
- Analyse these along with a control sample

CME Projection for IPS OBSID 1147479952 and CACTus CME 201605_0045 http://sidc.oma.be/cactus/catalog/LASCO/2_5_0/qkl/2016/05/CME0045/CME.html

55

J. Morgan

- **I.** Why use IPS for extragalactic studies?
- **II. How** do we measure IPS with the MWA?
- III. What results did we get?
- IV. Where to from here?

Future

- Improvements in sensitivity (factor of ~1.5) using "natural" weighting schemes
- New observations being made since June 2019 with expanded MWA.

Future

• Processing of large number of observations from 2016 under way.

- Widefield IPS with the MWA extremely efficient to study large parts of the sky for:
 - Pulsars
 - Subarcsecond scale extragalactic radio sources (e.g. AGNs)
 - Rare very high redshift sources.
 - space weather studies by mapping CME (enabled by large number of pierce points)
- Low frequency compact radio source population:
 - Significantly different from overall low frequency population
 - Composition very different from that at high frequencies
 - Dominated by peaked-spectrum/steep-spectrum sources (~80%)

- Widefield IPS with the MWA extremely efficient to study large parts of the sky for:
 - Pulsars
 - Subarcsecond scale extragalactic radio sources (e.g. AGNs)
 - Rare very high redshift sources.
 - space weather studies by mapping CME (enabled by large number of pierce points)
- Low frequency compact radio source population:
 - Significantly different from overall low frequency population
 - Composition very different from that at high frequencies
 - Dominated by peaked-spectrum/steep-spectrum sources (~80%)
- Technique can be implemented on SKA-Low for angular resolution improvement.

Thank you

Additional Slides

MWA scintillators v known scintillators

